Abstract

The field of the human microbiome is rapidly growing due to the recent advances in high-throughput sequencing technologies. Meanwhile, there have also been many new analytic pipelines, methods and/or tools developed for microbiome data preprocessing and analytics. They are usually focused on microbiome data with continuous (e.g., body mass index) or binary responses (e.g., diseased vs. healthy), yet multi-categorical responses that have more than two categories are also common in reality. In this paper, we introduce a new unified cloud platform, named MiMultiCat, for the analysis of microbiome data with multi-categorical responses. The two main distinguishing features of MiMultiCat are as follows: First, MiMultiCat streamlines a long sequence of microbiome data preprocessing and analytic procedures on user-friendly web interfaces; as such, it is easy to use for many people in various disciplines (e.g., biology, medicine, public health). Second, MiMultiCat performs both association testing and prediction modeling extensively. For association testing, MiMultiCat handles both ecological (e.g., alpha and beta diversity) and taxonomical (e.g., phylum, class, order, family, genus, species) contexts through covariate-adjusted or unadjusted analysis. For prediction modeling, MiMultiCat employs the random forest and gradient boosting algorithms that are well suited to microbiome data while providing nice visual interpretations. We demonstrate its use through the reanalysis of gut microbiome data on obesity with body mass index categories. MiMultiCat is freely available on our web server.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.