Abstract

This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.

Highlights

  • In radar domain, high resolution and good robustness against the noise are essential in detection and imaging processing

  • To assess the advantages using optimized orthogonal frequency division multiplexing (OFDM) signals, the image quality parameters of the five optimized solution couples are compared to those obtained with the up and down chirps and with the fullOFDM signal

  • The use of OFDMoptimized solution couple achieves a better rejection of the ghost effect compared to the use of the up and down chirp couple

Read more

Summary

Introduction

High resolution and good robustness against the noise are essential in detection and imaging processing. The range ambiguity appears if the current transmitted pulse does not contribute to the back-scattered signal received after the transmission of this pulse. These late arrival echoes can appear when there are strong reflectors located after the maximum range detected by the radar system, namely ambiguity range. These kinds of echoes induce shadows in the image, which can be misinterpreted.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.