Abstract

For multiple-input multiple-output (MIMO) spatial-multiplexing transmission, zero-forcing detection (ZF) is appealing because of its low complexity. Our recent MIMO ZF performance analysis for Rician--Rayleigh fading, which is relevant in heterogeneous networks, has yielded for the ZF outage probability and ergodic capacity infinite-series expressions. Because they arose from expanding the confluent hypergeometric function $ {_1\! F_1} (\cdot, \cdot, \sigma) $ around 0, they do not converge numerically at realistically-high Rician $ K $-factor values. Therefore, herein, we seek to take advantage of the fact that $ {_1\! F_1} (\cdot, \cdot, \sigma) $ satisfies a differential equation, i.e., it is a \textit{holonomic} function. Holonomic functions can be computed by the \textit{holonomic gradient method} (HGM), i.e., by numerically solving the satisfied differential equation. Thus, we first reveal that the moment generating function (m.g.f.) and probability density function (p.d.f.) of the ZF signal-to-noise ratio (SNR) are holonomic. Then, from the differential equation for $ {_1\! F_1} (\cdot, \cdot, \sigma) $, we deduce those satisfied by the SNR m.g.f. and p.d.f., and demonstrate that the HGM helps compute the p.d.f. accurately at practically-relevant values of $ K $. Finally, numerical integration of the SNR p.d.f. produced by HGM yields accurate ZF outage probability and ergodic capacity results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.