Abstract
Synthetic aperture radar (SAR) is a well-proven remote sensing technique; however, current single-antenna SAR systems cannot fulfill the increasing demands of future remote sensing in high-resolution and wide-swath imaging performance. This paper presents a scheme of multiple-input and multiple-output (MIMO) SAR using chirp diverse waveform for wide-swath remote sensing. This approach employs MIMO antenna configuration in elevation which is divided into multiple subpertures. In this way, multiple pairs of transmit-receive virtual beams directing to different subswathes are formed simultaneously. Equivalently a large swath is synthesized. The corresponding system scheme, chirp diverse waveform design, multi-beam forming algorithm and range ambiguity performance are investigated. A chirp-scaling-based image formation algorithm is presented to focus the MIMO SAR simulation data. Comprehensive numerical simulation examples are performed. It is shown that the proposed method enables the SAR systems to operate with high flexibility and reconfigurability which is particularly attractive for next generation remote sensing technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.