Abstract
To facilitate coherent detection of orthogonal frequency division multiplexed transmissions, pilot symbols can be transmitted in some of the subcarriers. Their placement to minimise the mean squared error in channel estimation is considered. Such problems have been widely addressed previously for channels subject to wide sense stationary uncorrelated scattering processes. While the stationarity assumption is usually realistic, indoor wideband channels, for example, are subject to significantly correlated scattering processes. Furthermore, practical multiple antenna transmitters/receivers are bound to exhibit spatial correlations. This work considers pilot placement optimisation in a multiple antenna setting subject to arbitrary correlations in the delay and spatial domains. Noting that the naive approach incurs a prohibitive complexity, low complexity greedy solutions are developed. It is further proven that the conventional equi-spaced placement becomes optimal at high SNR even with correlations, when the correlation matrices are of full rank. A measurement campaign is conducted to estimate real-world channel statistics in an indoor wideband environment, and observe the applicability of developed algorithms. It is confirmed that practical channels are correlated to the extent of exhibiting rank deficiencies, and that the proposed placement algorithms result in improved channel estimation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.