Abstract

Channel estimation is a critical task in multiple-input multiple-output (MIMO) digital communications that substantially effects end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. A model is trained to estimate the gradient of the logarithm of a distribution and is used to iteratively refine estimates given measurements of a signal. We introduce a framework for training score-based generative models for wireless MIMO channels and performing channel estimation based on posterior sampling at test time. We derive theoretical robustness guarantees for channel estimation with posterior sampling in single-input single-output scenarios, and experimentally verify performance in the MIMO setting. Our results in simulated channels show competitive in-distribution performance, and robust out-of-distribution performance, with gains of up to 5 dB in end-to-end coded communication performance compared to supervised deep learning methods. Simulations on the number of pilots show that high fidelity channel estimation with 25% pilot density is possible for MIMO channel sizes of up to 64 × 256. Complexity analysis reveals that model size can efficiently trade performance for estimation latency, and that the proposed approach is competitive with compressed sensing in terms of floating-point operation (FLOP) count.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.