Abstract

Relay Nodes (RNs) have received special attention as a radio access technology which can overcome channel fading and improve the channel capacity in high-speed and dense vehicle environments. RNs have been the object of standardization by the 3GPP; however, this process has not been accompanied by the development of hardware that allows for evaluation of the advantages of RNs. Software Defined Radio (SDR) has emerged as a promising technology to implement the concept of RNs at low cost. In this paper, a detailed study of the MIMO wireless channel between an evolved Node-B (eNB) and an RN is carried out. The developed algorithms are implemented in an SDR platform for Decode-and-Forward (D&F) relay node evaluation, resulting in significant improvements of its capabilities on the MIMO channel. A pilot symbol-assisted channel estimation algorithm based on combinations of the Least-Squares (LS) technique and Bi-Cubic (BCI), Bi-Linear (BLI), and Bi-Nearest Neighbors (BNNI) interpolation methods is considered. Furthermore, the Minimum Mean Square Error (MMSE) and Zero-Forcing (ZF) equalization schemes are studied. In the tests conducted, Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) scenarios are considered, demonstrating the capabilities of the developed platform. The performance measurements using different modulation schemes are compared under the same conditions. The simulation results show that the LS technique together with the BCI and MMSE methods performed the best among all evaluated channel estimation and equalization algorithms, in terms of the Error Vector Magnitude (EVM) performance of the received Resource Grid (RG). Furthermore, we show that the Bit Error Rate (BER) and throughput of the core network increase when using the 2 × 2 MIMO technique.

Highlights

  • Wireless communications services have expanded beyond person-to-person communication.New applications and services have experienced continually increasing demand

  • We show that the Bit Error Rate (BER) and throughput of the core network increase when using the 2 × 2 Multiple-Input and Multiple-Output (MIMO) technique

  • A total of 50 frames were transmitted in each transmission and 10 transmissions were performed for each Signal-to-Noise Ratio (SNR)

Read more

Summary

Introduction

Wireless communications services have expanded beyond person-to-person communication.New applications and services have experienced continually increasing demand. The transition to more experiential activities will place higher demand on networks, requiring greater bandwidth and lower latency, as well as devices with low cost and power consumption [1]. These devices must co-operate to transmit data to the desired location. Relay Nodes (RNs) are a “relaying technology” introduced within the LTE (Long-Term Evolution) paradigm, which are commonly preferred due to their high and rapid exchange rate, range, and reliability [2,3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call