Abstract

The use of multiple-antenna arrays in both transmission and reception promises huge increases in the throughput of wireless communication systems. It is therefore important to analyze the capacities of such systems in realistic situations, which may include spatially correlated channels and correlated noise, as well as correlated interferers with known channel at the receiver. Here, we present an approach that provides analytic expressions for the statistics, i.e., the moments of the distribution, of the mutual information of multiple-antenna systems with arbitrary correlations, interferers, and noise. We assume that the channels of the signal and the interference are Gaussian with arbitrary covariance. Although this method is valid formally for large antenna numbers, it produces extremely accurate results even for arrays with as few as two or three antennas. We also develop a method to analytically optimize over the input signal covariance, which enables us to calculate analytic capacities when the transmitter has knowledge of the statistics of the channel (i.e., the channel covariance). In many cases of interest, this capacity is very close to the full closed-loop capacity, in which the transmitter has instantaneous channel knowledge. We apply this analytic approach to a number of examples and we compare our results with simulations to establish the validity of this approach. This method provides a simple tool to analyze the statistics of throughput for arrays of any size. The emphasis of this paper is on elucidating the novel mathematical methods used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.