Abstract

A coherent multiple-input multiple-output architecture is proposed for optical wireless communications (OWCs) to mitigate atmospheric turbulence effects. Transmitter optical signals operate at distinct carrier frequencies to allow the received optical signals to be separately processed. The accumulated phase noise in each transmission branch can then be independently and electrically compensated. Based on the proposed architecture, several diversity combining techniques are used at the receiver end for system performance evaluation. Three different turbulence models are considered in this paper for different scintillation level ranges, including gamma-gamma turbulence, K-distributed turbulence, and negative exponential turbulence. Closed-form error rate expressions are derived using a series expansion approach. The diversity order in the gamma-gamma turbulence channel is found to depend only on the smaller channel parameter, while the K-distributed and negative exponential turbulence channels are found to have the same diversity order. The presented numerical results demonstrate substantial system performance improvement over single-link coherent OWC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call