Abstract
This paper treats multiple-input multiple-output (MIMO) antenna subset selection employing space-time coding. We consider two cases differentiated based on the type of channel knowledge used in the selection process. We address both the selection algorithms and the performance analysis. We first consider the case when the antenna subsets are selected based on exact channel knowledge (ECK). Our results assume the transmission of orthogonal space-time block codes (with emphasis on the Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-68, Oct. 1998) code). Next, we treat the case of antenna subset selection when statistical channel knowledge (SCK) is employed by the selection algorithm. This analysis is applicable to general space-time coding schemes. When ECK is available, we show that the selection algorithm chooses the antenna set that maximizes the channel Frobenius norm leading to both coding and diversity gain. When SCK is available, the selection algorithm chooses the antenna set that maximizes the determinant of the covariance of the vectorized channel leading mostly to a coding gain. In case of ECK-based selection, we provide analytical expressions for average SNR and outage probability improvement. For the case when SCK-based selection is used, we derive expressions for coding gain. We also present extensive simulation studies, validating our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.