Abstract

Animals change their body coloration for a variety of purposes including communication, thermoregulation and crypsis. The cues that trigger adaptive colour change are often unclear, and the role of colour vision remains largely untested. Here, we investigated the bluestriped fangblenny (Plagiotremus rhinorhynchos), an aggressive mimic that changes its body coloration to impersonate a variety of coral reef fishes. In this field, we determined the fish species that the fangblenny associated with and measured the spectral reflectance of mimics and their models. We measured the spectral absorbance characteristics of the retinal photoreceptor visual pigments in the bluestriped fangblenny using microspectrophotometry and found it to have rod photoreceptors (lambda(max) 498 nm), single cones (449 nm) and double cones (561 nm principal member; 520 nm accessory member). Using theoretical vision models, fangblennies could discriminate between the colours they adopted and the colours of the fish they associated with. Potential signal receivers (Abudefduf abdominalis and Ctenochaetus strigosus) perceived colours of most mimics to closely resemble fishes they associated with. However, fishes with ultraviolet-sensitive visual pigments were better at discriminating between mimics and models. Therefore, colour vision could be used by fangblennies when initiating colour change enabling them to accurately resemble fishes they associate with and to avoid detection by signal receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.