Abstract

Of the composite materials occurring in nature, the plant cell wall is among the most intricate, consisting of a complex arrangement of semicrystalline cellulose microfibrils in a dissipative matrix of lignin and hemicelluloses. Here, a biomimetic, two-dimensional cellulose system of the cell wall structure is introduced where cellulose nanocrystals compose the crystalline portion and regenerated amorphous cellulose composes the dissipative matrix. Spectroscopic ellipsometry and QCM-D are used to study the water vapor uptake of several two-layer systems. Quantitative analysis shows that the vapor-induced swelling of these ultrathin films can be controlled by varying ratios of the chemically identical ordered and unordered cellulose components. Intriguingly, increasing the share of crystalline cellulose appeared to increase the vapor uptake but only in cases for which the interfacial area between the crystalline and amorphous area was relatively large and the thickness of an amorphous overlayer was relatively small. The results show that a biomimetic approach may occasionally provide answers as to why certain native structures exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.