Abstract

The surface of human hair is normally hydrophobic as it is covered by a lipid layer, mainly composed of 18-methyleicosanoic acid (18-MEA). When the hair is damaged, this layer can be partially or fully removed and more hydrophilic, mainly negatively charged surfaces are formed with a wide variety of physical and chemical characteristics. The cosmetic industry is currently embracing the opportunity of increasing the sustainability of their hair-care products whilst improving product performance. To do this, it is vital to have a deeper understanding of the hair surface and how it interacts with hair-care ingredients. This work contributes to this by harnessing the potential of neutron reflectometry (NR) with scattering contrast variation to describe hierarchical adsorption. Three types of hair-mimetic surfaces have been produced: two "healthy hair" models to probe the role of lipid structure, and one "damaged hair" model, to consider the effect of the surface charge. Adsorption of hair-care ingredients has then been studied. The results for these relatively short lipid models indicate that a methyl branch has little effect on adsorption. The "damaged hair" studies, however, reveal the unexpected apparent adsorption of an anionic surfactant to a negative surface. This preferential adsorption of the otherwise solubilised neutral components demonstrates a facile route to selectively deliver a protective film on a damaged hair fibre, without the need for a cationic species. On a more general note, this study also demonstrates the feasibility of using NR to characterize such complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.