Abstract

Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions.

Highlights

  • Stem cells are characterized by their extensive potential for proliferation and differentiation, as well as their major role in homeostasis and tissue regeneration

  • This paper will review some of the main extrinsic characteristics of the neurogenic niche and how current knowledge about it is being used to design biocompatible substrates that mimic the microenvironment of neural stem cells in order to regulate their biology, as well as the impact this may have on the future of tissue regeneration therapies

  • Two specific and welldescribed neurogenic regions remain in the adult brain after the embryonic phase, the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles (Figure 2)

Read more

Summary

Introduction

Stem cells are characterized by their extensive potential for proliferation and differentiation, as well as their major role in homeostasis and tissue regeneration. Stem cells are a promising source for cell replacement therapies and cell regeneration after injury or disease, their use is still limited because there are several factors that must be taken into account, such as survival, tissue integration, specific differentiation, and functionality. The use of in vitro models that simulate various components of the niche has helped the understanding of the role of the various factors that compose it and even the design of artificial models that recapitulate microenvironment conditions [1, 2]. This paper will review some of the main extrinsic characteristics of the neurogenic niche and how current knowledge about it is being used to design biocompatible substrates that mimic the microenvironment of neural stem cells in order to regulate their biology, as well as the impact this may have on the future of tissue regeneration therapies

Embryonic and Adult Neural Stem Cells
Neural Stem Cell Niche
Biocompatible Substrates for Mimicking the Neural Stem Cell Niche
Bioactive Factors Coupled to Compatible Substrates
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call