Abstract

ABSTRACTWe consider an optical and mechanical mode interacting through both linear and quadratic dispersive couplings in a general cavity-optomechanical set-up. The parity and strength of an intrinsic quadratic optomechanical coupling (QOC) provides an opportunity to control the optomechanical (OM) interaction. We quantify this interaction by studying normal-mode splitting (NMS) as a function of the QOC's strength. The proposed scheme exhibits NMS features equivalent to a hybrid-OM system containing either an optical parametric amplifier or a Kerr medium. Such a system in reality could offer an alternative platform for devising state-of-art quantum devices with requiring no extra degrees-of-freedom as in hybrid-OM systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.