Abstract

In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in L2 and L1 norms were verified with numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.