Abstract

BackgroundCatecholamine-storm is considered the major cause of enterovirus 71-associated cardiopulmonary death. To elucidate the effect of milrinone on cardiac mitochondria and death, a rat model of catecholamine-induced heart failure was investigated.MethodsYoung male Spray-Dawley rats received a continuous intravenous infusion of norepinephrine then followed by co-treatment with and without milrinone or esmolol. Vital signs were monitored and echocardiography was performed at indicated time points. At the end of experiments, hearts were extracted to study mitochondrial function, biogenesis, and DNA copy numbers.ResultsHypernorepinephrinemia induced persistent tachycardia, hypertension, and high mortality and significantly impaired the activities of the electron transport chain and suppressed mitochondrial DNA copy number, mitochondrial transcription factor A and peroxisome proliferator-activated receptor-gamma coactivator 1-α. Norepinephrine-induced hypertension could be significantly suppressed by milrinone and esmolol. Milrinone improved but esmolol deteriorated the survival rate. The left ventricle was significantly enlarged shortly after norepinephrine infusion but later gradually reduced in size by milrinone. The impairment and suppression of mitochondrial function could be significantly reversed by milrinone but not by esmolol.ConclusionsMilrinone may protect the heart via maintaining mitochondrial function from hypernorepinephrinemia. This study warrants the importance of milrinone and the preservation of mitochondrial function in the treatment of catecholamine-induced death.Impact Milrinone may protect the heart from hypernorepinephrinemia-induced death via maintaining myocardial mitochondrial activity, function, and copy number.Maintenance of cardiac mitochondrial function may be a potential therapeutic strategy in such catecholamine-induced heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.