Abstract

Energy field is one of the practical areas to which optimization can contribute significantly. In this chapter, the application of mixed-integer linear programming (MILP) approaches to optimal design and operation of distributed energy systems is described. First, the optimal design and operation problems are defined, and relevant previous work is reviewed. Then, an MILP method utilizing the hierarchical relationship between design and operation variables is presented. In the optimal design problem, integer variables are used to express the types, capacities, numbers, operation modes, and on/off states of operation of equipment, and the number of these variables increases with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. The presented method can change the enumeration tree for the branching and bounding procedures, and can search the optimal solution very efficiently. Finally, future work in relation to this method is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.