Abstract
Acute lung injury is an inflammation that triggers acute respiratory distress syndrome with perialveolar neutrophil infiltration, alveolar-capillary barrier damage, and lung edema. Activation of the toll-like receptor 4 complex (TLR4/MD2) and its downstream signaling pathways are responsible for the cytokine storm and cause alveolar damage. Due to the complexity of this pulmonary inflammation, a defined pharmacotherapy has not been established. Thus, this study evaluated the anti-inflammatory potential of milonine, an alkaloid of Cissampelos sympodialis Eichl, in an experimental model of lung inflammation. BALB/c mice were lipopolysaccharide-challenged and treated with milonine at 2.0 mg/kg. Twenty-four hours later, the bronchoalveolar fluid, peripheral blood, and lungs were collected for cellular and molecular analysis. The milonine treatment decreased the cell migration (mainly neutrophils) to the alveoli, the pulmonary edema, and the cytokine levels (IL-1β, IL-6, TNF-α). The systemic IL-6 level was also reduced. The milonine docking analysis demonstrated hydrophobic interaction at TLR4/MD2 groove with Ile124 and Phe126 amino acids. Indeed, the alkaloid downregulated the kinase-Akt and NF-κB through TLR4/MD2. Therefore, milonine is an effective inflammatory modulator being a potential molecule for the treatment of lung inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.