Abstract

In Cisneros-Molina et al. (São Paulo J Math Sci, 2023. https://doi.org/10.1007/s40863-023-00370-y) it was proved the existence of fibrations à la Milnor (in the tube and in the sphere) for real analytic maps f:(Rn,0)→(Rk,0)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f:({\\mathbb {R}}^n,0) \\rightarrow ({\\mathbb {R}}^k,0)$$\\end{document}, where n≥k≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n\\ge k\\ge 2$$\\end{document}, with non-isolated critical values. In the present article we extend the existence of the fibrations given in Cisneros-Molina et al. (São Paulo J Math Sci, 2023. https://doi.org/10.1007/s40863-023-00370-y) to differentiable maps of class Cℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^{\\ell }$$\\end{document}, ℓ≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell \\ge 2$$\\end{document}, with possibly non-isolated critical value. This is done using a version of Ehresmann fibration theorem for differentiable maps of class Cℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^{\\ell }$$\\end{document} between smooth manifolds, which is a generalization of the proof given by Wolf (Michigan Math J 11:65–70, 1964) of Ehresmann fibration theorem. We also present a detailed example of a non-analytic map which has the aforementioned fibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.