Abstract
We determine a one-to-one correspondence between Milnor fibers and minimal symplectic fillings of a quotient surface singularity (up to diffeomorphism type) by giving an explicit algorithm to compare them mainly via techniques from the minimal model program for 3-folds and Pinkham's negative weight smoothing. As by-products, we show that:– Milnor fibers associated to irreducible components of the reduced versal deformation space of a quotient surface singularity are not diffeomorphic to each other with a few obvious exceptions. For this, we classify minimal symplectic fillings of a quotient surface singularity up to diffeomorphism.– Any symplectic filling of a quotient surface singularity is obtained by a sequence of rational blow-downs from a special resolution (so-called the maximal resolution) of the singularity, which is an analogue of the one-to-one correspondence between the irreducible components of the reduced versal deformation space and the so-called P-resolutions of a quotient surface singularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.