Abstract

Milnacipran, a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor, increases extracellular 5-HT and NA levels equally in the central nervous system. Here, we report that systemic administration of milnacipran (20-60 mg/kg) significantly suppressed food intake after fasting in C57BL6J mice. The appetite-suppressing effects of milnacipran were sustained for 5 h. Neither SB242084, a selective 5-HT2C receptor antagonist, nor SB224289, a selective 5-HT1B receptor antagonist, reversed the appetite-suppressing effects of milnacipran. Milnacipran suppressed food intake and body weight in wild-type mice and in A(y) mice, which have ectopic expression of the agouti protein. Moreover, milnacipran significantly increased hypothalamic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA levels, while having no effect on hypothalamic neuropeptide Y, ghrelin, corticotropin-releasing hormone (CRH), and suppressor of cytokine signaling-3 mRNA levels. Interestingly, milnacipran did not increase plasma corticosterone and blood glucose levels, whereas fenfluramine, which inhibits 5-HT reuptake and stimulates 5-HT release, significantly increased plasma corticosterone and blood glucose levels in association with increased hypothalamic CRH mRNA levels. The appetite-suppressing effects of milnacipran had no effects on food intake in food-restricted, wild-type mice and A(y) mice. On the other hand, fenfluramine suppressed food intake in food-restricted wild-type mice, but it had no effects in food-restricted A(y) mice. These results suggest that inhibition of 5-HT and NA reuptake induces appetite-suppressing effects independent of 5-HT2C and 5-HT1B receptors, and increases hypothalamic POMC and CART gene expression without increasing plasma corticosterone and blood glucose levels in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call