Abstract

The all-trans retinoic acid and 9-cis retinoic acid receptors (RAR and RXR, respectively) belong to a family of ligand inducible transcription factors, which exert their effect via binding to hormone response elements. Both are members of the class II sub-family of nuclear receptors, which bind DNA as dimers, on tandem repeats of a hexamer motif separated by a variable spacer. The variability in spacer length and the head-to-tail organization of the hormone response elements result in different protein-protein interactions in each of the complexes. We show that the zinc-coordinating loop regions of RXR and RAR DNA-binding domains exhibit dynamics on the millisecond to microsecond time scale. The highly dynamic second zinc finger of RXR constitutes the primary protein-protein interface in many nuclear receptor assemblies on DNA. Dynamics is also observed in the first and second zinc fingers of RAR, which are implicated in dimeric interactions with RXR on response elements with spacers of 5 base pairs and 1 base pair, respectively. The striking correspondence between the regions that exhibit conformational exchange and the dimer interfaces of the proteins complexed with DNA suggests a functional role for the dynamics. The observed flexibility may allow the proteins to adapt to various partners and with different orientations upon assembly on DNA. Furthermore, the more extensive dynamics observed for RXR may reflect the greater ability of this protein to modulate its interaction surface since it participates in a wide variety of receptor complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.