Abstract

Biological tissues comprise complex structural environments known to influence cell behavior via multiple interdependent sensing and transduction mechanisms. Yet, and despite the predominantly nonplanar geometry of these environments, the impact of tissue-size (milliscale) curvature on cell behavior is largely overlooked or underestimated. This study explores how concave, hemicylinder-shaped surfaces 3-50mm in diameter affect the migration, proliferation, orientation, and differentiation of C2C12 myoblasts. Notably, these milliscale cues significantly affect cell responses compared with planar substrates, with myoblasts grown on surfaces 7.5-15mm in diameter showing prevalent migration and alignment parallel to the curvature axis. Moreover, surfaces within this curvature range promote myoblast differentiation and the formation of denser, more compact tissues comprising highly oriented multinucleated myotubes. Based on the similarity of effects, it is further proposed that myoblast susceptibility to substrate curvature depends on mechanotransduction signaling. This model thus supports the notion that cellular responses to substrate curvature and compliance share the same molecular pathways and that control of cell behavior can be achieved via modulation of either individual parameter or in combination. This correlation is relevant for elucidating how muscle tissue forms and heals, as well as for designing better biomaterials and more appropriate cell-surface interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call