Abstract

When machining the complex parts of aircraft engines, the milling force for the circular contour must be accurately predicted to reduce machining vibration. In this paper, the prediction model of the mean milling force per tooth during machining circular contour is developed. Firstly, the formulas of the entry angle, the exit angle and the equivalent feed per tooth are established through the analysis of circular contour milling process. Then, the equation of the mean milling force per tooth is deduced based on mechanistic force model during the circular contour machining process. Finally, the prediction model of mean milling force per tooth during machining circular contour is developed using MATLAB programming. The relationship between the milling force per tooth and surface curvature radius of the machined workpiece is also analyzed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.