Abstract

Nanomaterials High-purity corundum (α-Al2O3) nanoparticles could enable applications such as more stable catalyst supports or precursors for high-strength ceramics. Milling of corundum only produces micrometer-scale particles, and direct synthesis from other aluminum oxides that would be likely starting materials, such as γ-Al2O3, fails because of the high activation barrier for converting the lattice structure of these cubic close-packed oxides. Amrute et al. show that ball milling of boehmite, γ-AlOOH, created ∼13-nanometer-diameter corundum nanoparticles of high purity through a mechanically induced dehydration reaction and by the effect of milling impacts on the surface energy of the particles. Science , this issue p. [485][1] [1]: /lookup/doi/10.1126/science.aaw9377

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.