Abstract

Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call