Abstract
We report the results of a submillimetre continuum emission survey targeted towards 78 star formation regions, 72 of which are devoid of methanol maser and UC HII regions, identified in the Swedish ESO Submillimetre Telescope (SEST)/SEST IMaging Bolometer Array (SIMBA) millimetre continuum survey of Hill et al. At least 45 per cent of the latter sources, dubbed ‘mmonly’, detected in this survey are also devoid of the mid-infrared MSX emission. The 450- and 850-μm continuum emission was mapped using the Submillimetre Common User Bolometer Array (SCUBA) instrument on the James Clerk Maxwell Telescope (JCMT). Emission is detected towards 97 per cent of the 78 sources targeted as well as towards 28 other SIMBA sources lying in the SCUBA fields. In total, we have identified 212 cores in this submillimetre survey, including 106 previously known from the SIMBA survey. Of the remaining 106 sources, 53 result from resolving a SIMBA source into multiple submillimetre components, whilst the other 53 sources are submillimetre cores, not seen in the SIMBA. Additionally, we have identified two further mmonly sources in the SIMBA images. Of the total 405 sources identified in the SIMBA survey, 255 are only seen at millimetre wavelengths. We concatenate the results from four (sub)millimetre continuum surveys of massive star formation, together with the Galactic plane map of Pierce-Price et al. in order to determine the dust grain emissivity index β for each of the sources in the SIMBA source list. We examine the value of β with respect to temperature, as well as for the source classes identified in the SIMBA survey, for variation of this index. Our results indicate that β is typically 2, which is consistent with previous determinations in the literature, but for a considerably larger sample than previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.