Abstract

This paper presents design and experimental verification of electronically steerable integrated lens antennas (ILAs) for WLAN/WPAN communication systems operating in the 60-GHz frequency band. The antenna is comprised of a quartz extended hemispherical lens, four switched aperture coupled microstrip antenna (ACMA) elements, and a distribution circuit based on SPDT MMIC switches. The designed ILAs are capable of electronic steering between four different antenna main beam directions in one plane. Fixed beam and electronically steerable ILA prototypes are fabricated and tested. The results are given for two quartz dielectric lenses with the radii of 7.5 and 12.5 mm in order to meet a wide range of WLAN/WPAN requirements. The measured maximum gains of the designed ILAs are 18.4 and 23.2 dBi. The experimental results of the fabricated electronically steerable quartz ILA prototypes prove the simulation results and show ±35 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> and ±22 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> angle sector coverage for the lenses with the 7.5 and 12.5 mm radii, respectively. The bandwidth of the ILAs exceeds the frequency band of 57-66 GHz allocated for WLAN/WPAN applications. The designed ILAs meet all the requirements for steerable directional antennas of 60-GHz WLAN/WPAN systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call