Abstract
Millimeter-wave dielectric ceramics have been used like applications for ultrahigh speed wireless LAN because it reduces the resources of electromagnetic wave, and Intelligent Transport System (ITS) because of straight propagation wave. For millimeter-wave, the dielectric ceramics with high quality factor (Q·f), low dielectric constant(e r ), and nearly zero temperature coefficient of resonant frequency (τ f ) are needed. No microwave dielectric ceramics with these three properties exist except Ba(Mg 1/3 Ta 2/3 )O₃ (BMT), which has a little high τ f . In this paper, alumina (Al₂O₃) and forsterite (Mg₂SiO₄), candidates for millimeter-wave applications, were studied with an objective to get high Q·f and early zero τ f . For alumina ceramics, Q·f more than 680,000 GHz was obtained but it was difficult to obtain nearly zero τ f . On the other hand, for forsterite ceramics, Q·f was achieved from 10,000 GHz of commercial forsterite to 240,000 GHz of highly purified MgO and SiO₂ raw materials, and τ f was reduced a few by adding TiO₂ with high positive τ f .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.