Abstract
In the quest for low power bio-inspired spiking sensors, functional oxides like vanadium dioxide are expected to enable future energy efficient sensing. Here, we report uncooled millimeter-wave spiking detectors based on the sensitivity of insulator-to-metal transition threshold voltage to the incident wave. The detection concept is demonstrated through actuation of biased VO2 switches encapsulated in a pair of coupled antennas by interrupting coplanar waveguides for broadband measurements, on silicon substrates. Ultimately, we propose an electromagnetic-wave-sensitive voltage-controlled spike generator based on VO2 switches in an astable spiking circuit. The fabricated sensors show responsivities of around 66.3 MHz.W−1 at 1 μW, with a low noise equivalent power of 5 nW.Hz−0.5 at room temperature, for a footprint of 2.5 × 10−5 mm2. The responsivity in static characterizations is 76 kV.W−1. Based on experimental statistical data measured on robust fabricated devices, we discuss stochastic behavior and noise limits of VO2 -based spiking sensors applicable for wave power sensing in mm-wave and sub-terahertz range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.