Abstract

A new non-invasive method for determining the free water content in human skin has been developed. The method analyzes the reflection of millimeter (mm) wavelength electromagnetic waves. The amount of reflection of mm waves depends on an electrical property (namely, the permittivity) of the skin, and this depends upon the free water content of the various skin layers. The aim of the present study was to use the mm wave reflectometry method for determination of free water content in healthy skin treated with different hydrating substances. Skin lotion, pure water, glycerol, and petroleum jelly (an occlusive substance) were used for hydration of skin. The amount of free water was calculated using the permittivity values of skin layers found from fitting a three layer skin model to measured reflection data. The skin model consisted of (1) the stratum corneum (SC), (2) the viable epidermis plus the dermis, and (3) fat layers. Mm wave reflection was significantly affected by the water content of the thick SC of the palm but not by the very thin SC of the forearm. Treatment of the forearm and palm skin with different hydrating substances produced notable changes of the free water content in the SC, but not in the viable epidermis or dermis. The greatest hydration was produced by pure water and skin lotion, and the lowest by petroleum jelly. However, petroleum jelly produced prolonged retention of water in the SC following its hydration by other moisturizers. The content of free water was found to return to its baseline value after removal of moisturizers in as short a time as 8.3 min. The study shows that mm wave reflectometry can be used as a sensitive technique for the non-invasive determination of water content in living skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call