Abstract
Millimeter-tall vertically-aligned carbon nanotubes (VA-CNTs) were grown from ethanol under ambient pressure by Co-catalyzed chemical vapor deposition (CVD), with systematic optimization of the CVD temperature and catalytic conditions using combinatorial catalyst libraries. We investigated the use of both aluminum oxide and silicon oxide as underlayers for the Co catalyst and found that VA-CNTs grew to millimeter heights in 15–30min when the pyrolysis of ethanol was carried out at high temperatures (⩾850°C) and long residence times (⩾10s). Thick Co catalytic layers (⩾1.3nm) produced (sub)millimeter-tall multi-walled VA-CNTs on both the aluminum oxide and silicon oxide underlayers. However, thin Co catalytic layers (0.62–1.0nm) produced (sub)millimeter-tall VA-CNTs, which consisted mainly of single-walled CNTs, only on the aluminum oxide underlayers. Stripe patterns were found in the VA-CNTs near the substrate on both aluminum oxide and silicon oxide, indicating some instability prior to growth termination. The possible roles of aluminum oxide in growing millimeter-tall single-walled VA-CNTs were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.