Abstract

Millimeter/submillimeter spectra of PH{sub 2}CN ( X-tilde {sup 1}A') and CH{sub 3}PH{sub 2} ( X-tilde {sup 1}A') have been recorded for the first time using direct absorption techniques. This work extends previous measurements of both molecules beyond the 10-50 GHz range. Both species were created in the presence of an AC discharge by the reaction of phosphorus vapor and either cyanogen and hydrogen (PH{sub 2}CN) or methane (CH{sub 3}PH{sub 2}). Twelve rotational transitions of PH{sub 2}CN were recorded over the region 305-422 GHz for asymmetry components K{sub a} = 0 through 8. For CH{sub 3}PH{sub 2}, eight rotational transitions were measured from 210-470 GHz with K{sub a} = 0 through 16; these spectra exhibited greater complexity due to the presence of internal rotation, which splits the K{sub a} = 1, 2, and 3 asymmetry components into A and E states. Combined analyses of the millimeter/submillimeter and previous microwave data were performed for both molecules. For PH{sub 2}CN, the spectra were fit with a Watson S-reduced asymmetric top Hamiltonian, resulting in more accurate rotational and centrifugal distortion constants. In the case of CH{sub 3}PH{sub 2}, an asymmetric top internal-rotation Hamiltonian was employed in the analysis, significantly improving the rotational and torsionalmore » parameters over previous microwave estimates. Searches for both molecules were subsequently conducted toward Sgr B2(N), using the 12 m telescope of the Arizona Radio Observatory (ARO). Neither species was identified, with abundance upper limits, relative to H{sub 2}, of f (PH{sub 2}CN/H{sub 2}) 2 and >200, respectively.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.