Abstract

Electroforming of metal-insulator-metal diodes is a soft dielectric breakdown that changes the high resistance of as-prepared diodes to a low resistance state. Electroforming of Al-Al2O3-metal diodes with anodic Al2O3 results in voltage-controlled negative resistance in the current-voltage (I-V) characteristics, electroluminescence (EL), and electron emission into vacuum (EM). EL is due to electrons injected at the Al-Al2O3 interface combining with radiative defects in Al2O3. Surface plasmon polaritons (SPPs) are electromagnetic waves that can be excited by photons or electrons. SPPs are confined to a metal-dielectric interface, cause large electric fields in the metal and dielectric, and have ranges of micrometers. The temperature dependence of I-V curves, EL, and EM of a group of electroformed Al-Al2O3-Ag diodes with Al2O3 thicknesses between 12 nm and 20 nm, group A, was measured between 200 K and 300 K. After a sequence of temperature measurements, the Al-Al2O3-Ag diodes, the Al-Al2O3 regions between diodes, and portions of the Ag on the glass region that provides contacts to the diodes are darkened. The range of darkening is >7 mm in a diode with 12 nm of Al2O3 and 2.0–3.5 mm in diodes with Al2O3 thicknesses between 14 nm and 20 nm. Darkening is attributed to the occurrence of SPPs generated by EL photons at the Ag-Al2O3 and Al-Al2O3 interfaces. The results are compared to a second group of Al-Al2O3-Ag diodes with identical Al2O3 thicknesses, group B, that were prepared in the same way as the diodes of group A except for a difference in the deposition of Al films for the two groups. Al-Al2O3-Ag diodes of group B exhibit enhanced EL, which is attributed to spontaneous emission of recombination centers in Al2O3 being enhanced by large electromagnetic fields that are due to SPPs that are generated by EL photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.