Abstract

Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years1,2,3,4,5,6,7,8. This work is an important step towards the creation of ‘Schrödinger cats’, quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature9,10,11,12,13,14,15. More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling15. This is ideal for studying the gravitational state reduction16,17,18,19, a manifestation of the apparent conflict between general relativity and quantum mechanics16,20. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales21, measure the impact of a single air molecule14 and even produce Schrödinger cats of living organisms9.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.