Abstract

Designed experiments were conducted to prepare extrudates from different millet–legume blend ratios (BR) of varying moisture content (MC); the extruder was operated at varying die head temperature (DHT), barrel temperature (BT), and screw speed (SS). Second order polynomial models were developed using response surface methodology (RSM) to understand the effect of the variables on density, sectional expansion index (SEI), water absorption index (WAI) and crispness of extrudates. The MC had predominant effect upon SEI, WAI and crispness, while density was most susceptible to the variations in SS. All the models were found to be statistically valid. Optimum processing condition generated from the models was: MC, 23.2%w.b.; BR, 19.9%legume; DHT, 187 °C; BT, 121.1 °C and SS, 123 rpm. The predicted responses in terms of density, SEI, WAI and crispness were 0.52 kg/m 3, 5.1, 9.4 and 45, respectively. The predicted values registered non-significant ( p < 0.01) difference from experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.