Abstract
The increasingly stringent NOx emission regulations of the International Marine Organization (IMO) have demanded new design concepts and architectures for diesel engines. The Miller cycle, which reduces the in-cylinder combustion temperature by reducing the effective compression ratio, is the principal measure used for reducing NOx specific emissions; however, this is at the cost of volumetric efficiency and engine power. Therefore, it is essential to combine the Miller cycle with a highly boosted turbocharging system, two-stage turbocharging for example, to recover the power. While much work has been done in the development of Miller-cycle regulatable two stage turbocharging system for marine diesel engines, there are nonetheless few, if any, thorough discussions on system optimization and performance comparison. This study presents a theoretical optimization design process for a Miller-cycle regulatable, two-stage turbocharging system for marine diesel engines. First, the different scenarios and regulation methods of two-stage turbocharging systems are compared according to the system efficiency and equivalent turbine flow characteristics. Then, a multizone combustion model based on a one-dimensional cycle simulation model is established and used for the optimization of valve timings according to the IMO NOx emission limits and fuel efficiencies. The high- and low-stage turbochargers are selected by an iterative matching method. Then, the control strategies for the boost air and high-stage turbine bypass valves are also studied. As an example, a Miller-cycle regulatable, two-stage turbocharging system is designed for a highly boosted high-speed marine diesel engine. The results show that NOx emissions can be reduced by 30% and brake specific fuel consumption (BSFC) can also be improved by a moderate Miller cycle combined with regulatable two-stage turbocharging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.