Abstract

Both the East Asian winter monsoon (EAWM) and El Niño (EN) activities are vital climate modes that regulate the Pacific hydrologic cycle. However, the Holocene interactions among the EAWM, EN activities, and tropical Pacific precipitation remain unclear due to the lack of appropriate EAWM proxies. Here, we present high-resolution grain size records from the East China Sea shelf along with a transient climate model simulation to study the Holocene EAWM evolution and compare the findings with paleo-EN precipitation-related proxies records. The millennial-scale oscillations of grain size records, which are indicative of the intensity of the EAWM-driven coastal current, reveal an anti-phase coupling between the EAWM and EN-related tropical Pacific precipitation on a millennial timescale since 5.8 ka. These results, which are consistent with simulation results, indicate that the intensified EAWM could not only reduce equatorial western Pacific precipitation by reducing the sea surface temperature but also likely change boundary conditions in the tropical Pacific (i.e., the east-west Pacific temperature gradient and westerly anomaly) to favor the formation of subsequent intensive EN activities. The enhanced EN activities, inferred by the positive tropical eastern Pacific precipitation anomalies, could subsequently suppress the EAWM through anomalous low-level anticyclones and associated southerly anomalies, thereby generating intensified tropical western Pacific (mainly tropical monsoon areas) precipitation. Our study highlights these intrinsic interactions during the mid- to late Holocene and has useful implications for understanding this millennial-scale climate oscillation, which may represent periodic atmospheric exchange between high- and low-latitude climate systems by mediating the EAWM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.