Abstract

Mangrove forests are known as coastal carbon sinks, but the long-term (millennium-scale) preservation processes of organic matter (OM) in their soils and the role of sulphur in these processes are still not fully understood. These processes are crucial for better estimating the impact of sea-level variations on the carbon dynamics in mangrove forests, which are particularly sensitive to sea-level changes due to their direct hydrological interactions with coastal waters. This study focuses on a soil layer enriched in mangrove-derived OM that accumulated during a stable sea-level period of the Holocene in New Caledonia (South Pacific). Radiocarbon dating situates this enriched layer at approximately 4000 cal BP. The aim of this study is to characterize the enriched OM layer using bulk (Rock-Eval), isotopic (δ13C and δ15N), and molecular (lignin and neutral carbohydrates) analyses. This OM has undergone diagenetic processes such as dehydrogenation, and the loss of components such as the main neutral carbohydrates: glucose, xylose, and galactose. However, some Rock-Eval parameters, the total lignin content, and carbon and nitrogen isotopic ratios are characteristic of well-preserved OM, suggesting differential decomposition/preservation processes. In addition, SEM observations highlighted the presence of pyrite associated to preserved root material. Along with high Sorg/TOC ratio, these results suggest potential processes of OM sulfurization preserving it from decomposition. Prolonged sea-level stability in addition to anoxic and sulfidic soil conditions enhanced OM accumulation and long-term sequestration in mangrove soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.