Abstract

Fracture and thermal behavior of injection-molded poly (ethylene terephthalate-co-isophthalate) filled with milled glass fiber has been studied as a function of fiber content in the range 0-40% by weight. Composite Young's modulus and tensile strength increased with fiber percentage, and good agreement was found with theoretical predictions. Low rate fracture tests were carried out on injection-molded SENB specimens. Fracture toughness ( K ic ) and fracture energy ( G ic ) could be obtained by applying Linear Elastic Fracture Mechanics (LEFM). Results seemed to indicate improved fracture toughness if compared with homopolymer poly (ethylene terephthalate) composites. The reason was attributed to a lower crystallinity developed in the matrix, which promoted higher plastic strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.