Abstract

The dispersion of short fibers to oil well Portland slurries may improve the compressive strength and fracture energy of the hardened cementing material. A study was carried out to investigate the effect of the addition of ball-milled basalt fibers (5% BWOC) to Portland slurries. Samples were prepared with and without silica flour (40% BWOC) in the composition and cured for 7 days under different Bottom Hole Static Temperatures (BHST): 80 °C (176 °F) and 300 °C (572 °F). The mechanical properties and the microstructure of the hardened pastes were evaluated by compressive strength tests, X-ray diffraction and scanning electron microscopy. The results showed that milling basalt fibers was a cost efficient method to adjust the length of the basalt wool fibers assuring slurry mixing and, therefore, adequate pumpability. The combined addition of silica flour and basalt fibers improved the fracture energy of samples cured at 80 °C, therefore below the strength retrogression temperature. Curing at 300 °C resulted in significant fiber consumption by pozzolanic reactions that could not be prevented by the addition of silica flour. Therefore, ball-milled basalt fibers can be a cost-efficient and environmental-friendly solution to improve the mechanical properties of oil well cement slurries used below the retrogression temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.