Abstract
Compared to tubular membranes, spiral-wound membranes (SWM) cannot be operated at very high crossflow velocities due to mechanical instabilities of the module. We therefore applied a novel approach using custom-made microfiltration SWM modules to study the effects of crossflow velocities beyond the level currently applicable for commercial SWM. First, we used a modified industrial SWM (0.96 m) to measure flux and protein permeation spatially resolved within the limits of crossflow conditions applied in routine operation (maximum ΔpL of 1.3 bar). Secondly, we applied a short SWM (0.24 m) to assess the effect of extreme crossflow velocities with a corresponding ΔpL of up to 2.8 bar m−1. The goal was to investigate the effects of deposit formation reduced to the minimum, and thus, to measure the theoretically achievable improvement of flux and protein permeation even though this is currently not practicable. As key result, we found a critical crossflow velocity up to which a significant increase of protein mass flow could be achieved; beyond which, however, no further reduction in filtration resistance caused by deposit formation was observed. The filtration became independent of the transmembrane pressure. Based on these findings, more rigid modules could potentially improve the performance of SWM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.