Abstract

The effects of dietary starch concentration on yield of milk and milk components were evaluated in a crossover design experiment. Holstein cows (n=32; 115±22 d in milk) with a wide range in milk yield (28 to 62kg/d) were assigned randomly within level of milk yield to a treatment sequence. Treatments were diets containing 30% dry ground corn (CG) or 30% soyhulls (SH) on a DM basis. Diets containing corn silage and alfalfa silage were formulated to contain 16% crude protein, 24% forage neutral detergent fiber, and either 27 or 44% neutral detergent fiber and 30 or 12% starch for CG and SH, respectively. Cows were fed a diet intermediate to the treatments during a preliminary 14-d period. Treatment periods were 28 d with measurements taken throughout the period for energy calculations and the final 5 d used for data and sample collection for production variables. Compared with SH, CG increased dry matter intake, and yields of milk, milk protein, milk fat, and energy-corrected milk, as well as milk protein concentration. Treatment did not affect milk fat concentration. Yield of de novo synthesized and preformed milk fatty acids increased with CG. Treatment interacted with level of preliminary milk production for several response variables (yields of milk, milk protein, milk fat, energy-corrected milk, and 3.5% fat-corrected milk). Compared with SH, the CG treatment increased energy-corrected milk in higher-producing cows with a lesser response to CG as milk yield decreased. The CG treatment increased milk:feed compared with the SH treatment, but not body weight or body condition score. In conclusion, higher-producing cows benefited from the high-starch diet, and lower-producing cows were able to maintain production when most of the starch was replaced with nonforage fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call