Abstract

Alcohol consumption is a leading cause of liver disease worldwide; thus, there is an urgent need to develop novel therapeutic interventions. Key events for the onset and progression of alcoholic liver disease result in part from the gut-to-liver interaction. Osteopontin is a cytokine present at high concentration in human milk, umbilical cord, and infants' plasma with beneficial potential. We hypothesized that dietary administration of milk osteopontin could prevent alcohol-induced liver injury perhaps by maintaining gut integrity and averting hepatic inflammation and steatosis. Wild-type mice were fed either the control or the ethanol Lieber-DeCarli diets alone or in combination with milk osteopontin for 3 wk, and parameters of gut and liver damage were measured. Milk osteopontin protected the stomach and the gut by increasing gland height, crypt cell plus enterocyte proliferation, and mucin content in addition to lowering macrophages, plasmacytes, lymphocytes, and neutrophils in the mucosa and submucosa in alcohol-fed mice. Milk osteopontin targeted the gut-liver axis, preserving the expression of tight-junction proteins in alcohol-fed mice thus maintaining intestinal integrity and permeability. There was protection from liver injury since transaminases, the activity scores, triglyceride levels, neutrophil infiltration, 3-nitrotyrosine residues, lipid peroxidation end products, translocation of gram-negative bacteria, lipopolysaccharide levels, and tumor necrosis factor-α were lower in cotreated than in ethanol-fed mice. Furthermore, milk osteopontin diminished ethanol-mediated liver injury in OPN knockout mice. Milk osteopontin could be a simple effective nutritional therapeutic strategy to prevent alcohol hepatotoxicity due, among others, to gut protective, anti-inflammatory, and anti-steatotic actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.