Abstract

Milk fat globule membrane (MFGM) lipids have been studied in the presence and absence of proteins β-lactoglobulin and β-casein. The aim of this study was to relate the self-assembly structure, e.g. vesicles, formed in aqueous dispersions of MFGM lipids to the lipid composition, electrolyte composition as well as the effect of added milk proteins, i.e. β-lactoglobulin and β-casein. For this purpose, vesicles of phospholipid mixtures, containing dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), dioleoylphosphatidylethanolamine (DOPE), phosphatidylinositol (PI) and dioleoylphosphatidylserine (DOPS) at composition corresponding to that of the MFGM, were prepared by extrusion. The morphology of the formed structures of different sample compositions was studied with cryogenic transmission electron microscopy (Cryo-TEM). Mixtures of membrane lipid with a composition (e.g. 80% DOPE, 12% DOPC and 8% SM) that at high lipid content give liquid crystalline phases at the boundary of lamellar to reversed hexagonal phase rather formed microtubular structures than vesicles at high water content. A large proportion of multilamellar vesicles is formed in buffer and divalent salts than in pure water. A small increase in the interlayer spacing of the multilamellar vesicle was observed in the presence of β-casein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.