Abstract

Milk exosomes (mExos) have demonstrated significant promise as vehicles for the oral administration of protein and peptide drugs owing to their superior capacity to traverse epithelial barriers. Nevertheless, certain challenges persist due to their intrinsic characteristics, including suboptimal drug loading efficiency, inadequate mucus penetration capability, and susceptibility to membrane protein loss. Herein, a hybrid vesicle with self-adaptive surface properties (mExos@DSPE-Hyd-PMPC) was designed by fusing functionalized liposomes with natural mExos, aiming to overcome the limitations associated with mExos and unlock their full potential in oral peptide delivery. The surface property transformation of mExos@DSPE-Hyd-PMPC was achieved by introducing a pH-sensitive hydrazone bond between the highly hydrophilic zwitterionic polymer and the phospholipids, utilizing the pH microenvironment on the jejunum surface. In comparison to natural mExos, hybrid vesicles exhibited a 2.4-fold enhancement in the encapsulation efficiency of the semaglutide (SET). The hydrophilic and neutrally charged surfaces of mExos@DSPE-Hyd-PMPC in the jejunal lumen exhibited improved preservation of membrane proteins and efficient traversal of the mucus barrier. Upon reaching the surface of jejunal epithelial cells, the highly retained membrane proteins and positively charged surfaces of the hybrid vesicle efficiently overcame the apical barrier, the intracellular transport barrier, and the basolateral exocytosis barrier. The self-adaptive surface properties of the hybrid vesicle resulted in an oral bioavailability of 8.7% and notably enhanced the pharmacological therapeutic effects. This study successfully addresses some limitations of natural mExos and holds promise for overcoming the sequential absorption barriers associated with the oral delivery of peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.