Abstract

There is accumulating evidence that milk shapes the postnatal metabolic environment of the newborn infant. Based on translational research, this perspective article provides a novel mechanistic link between milk intake and milk miRNA-regulated gene expression of the transcription factor p53 and DNA methyltransferase 1 (DNMT1), two guardians of the human genome, that control transcriptional activity, cell survival, and apoptosis. Major miRNAs of milk, especially miRNA-125b, directly target TP53 and complex p53-dependent gene regulatory networks. TP53 regulates the expression of key genes involved in cell homeostasis such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10. Nuclear interaction of p53 with DNMT1 controls gene silencing. The most abundant miRNA of milk and milk fat, miRNA-148a, directly targets DNMT1. Reduced DNMT1 expression further attenuates the activity of histone deacetylase 1 (HDAC1) involved in the regulation of chromatin structure and access to transcription. The presented milk-mediated miRNA-p53-DNMT1 pathway exemplified at the promoter regulation of survivin (BIRC5) provides a novel explanation for the epidemiological association between milk consumption and acne vulgaris and prostate cancer. Notably, p53- and DNMT1-targeting miRNAs of bovine and human milk survive pasteurization and share identical seed sequences, which theoretically allows the interaction of bovine miRNAs with the human genome. Persistent intake of milk-derived miRNAs that attenuate p53- and DNMT1 signaling of the human milk consumer may thus present an overlooked risk factor promoting acne vulgaris, prostate cancer, and other p53/DNMT1-related Western diseases. Therefore, bioactive miRNAs of commercial milk should be eliminated from the human food chain.

Highlights

  • Milk is the postnatal nutrient and programming system of mammals, which promotes adequate growth and organ development

  • Growth and tissue maturation require enhanced gene expression, which is controlled by a host of genetic and epigenetic factors recently linked to complex interacting signal transduction pathways mediated by milk’s Mechanistic target of rapamycin complex 1 (mTORC1)-activating essential amino acids as well as milk exosome-derived Micro ribonucleic acid (miRNA) signaling [1,2,3,4,5,6,7,8]

  • Milk-miRNA-mediated down-regulation of p53 expression may attenuate apoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling implicated to play a crucial role in the pathogenesis of acne vulgaris (Av) and cancerogenesis of prostate cancer (PCa) (Fig. 2)

Read more

Summary

Introduction

Milk is the postnatal nutrient and programming system of mammals, which promotes adequate growth and organ development. Growth and tissue maturation require enhanced gene expression, which is controlled by a host of genetic and epigenetic factors recently linked to complex interacting signal transduction pathways mediated by milk’s mTORC1-activating essential amino acids as well as milk exosome-derived miRNA signaling [1,2,3,4,5,6,7,8]. Accumulating evidence underlines the bioavailability of orally administered bovine milk exosomes and their miRNA cargo, which survives gastrointestinal degradation, reaches the systemic circulation and modifies gene regulation in recipient cells of peripheral tissues.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.