Abstract

Acute-feeding and multiple-day studies have demonstrated that milk containing A2 β-casein only causes fewer symptoms of lactose intolerance (LI) than milk containing both A1 and A2 β-caseins. We conducted a single-meal study to evaluate the gastrointestinal (GI) tolerance of milk containing different concentrations of A1 and A2 β-casein proteins. This was a randomized, double-blind, crossover trial in 25 LI subjects with maldigestion and an additional eight lactose maldigesters who did not meet the QLCSS criteria. Subjects received each of four types of milk (milk containing A2 β-casein protein only, Jersey milk, conventional milk, and lactose-free milk) after overnight fasting. Symptoms of GI intolerance and breath hydrogen concentrations were analyzed for 6 h after ingestion of each type of milk. In an analysis of the 25 LI subjects, total symptom score for abdominal pain was lower following consumption of milk containing A2 β-casein only, compared with conventional milk (p = 0.004). Post hoc analysis with lactose maldigesters revealed statistically significantly improved symptom scores (p = 0.04) and lower hydrogen production (p = 0.04) following consumption of milk containing A2 β-casein only compared with conventional milk. Consumption of milk containing A2 β-casein only is associated with fewer GI symptoms than consumption of conventional milk in lactose maldigesters.

Highlights

  • 30% of cows’ milk protein is β-casein [1], of which two genetic variants exist: A1 and A2 [2]

  • Hydrogen breath concentration was analyzed in 25 lactose intolerance (LI) subjects

  • The results of our study indicate that the consumption of milk containing A2 β-casein only produced fewer GI symptoms in lactose maldigesters compared with consumption of conventional produced fewer GI symptoms in lactose maldigesters compared with consumption of conventional milk

Read more

Summary

Introduction

30% of cows’ milk protein is β-casein [1], of which two genetic variants exist: A1 and A2 [2]. A1 β-casein includes histidine at the 67th position in the peptide chain, whereas A2 β-casein includes proline at this position [3]. Digestive enzymes act on A1 β-casein and hydrolyze it, releasing beta-casomorphin-7 (BCM-7) [6,7,8,9,10]. The histidine residue in A1 β-casein allows cleavage to form BCM-7, whereas the proline residue in A2 β-casein limits such cleavage and BCM-7 formation [11]. BCM-7 is both pro-inflammatory and associated with slower gastrointestinal (GI)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call