Abstract

Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

Highlights

  • Surface-enhanced Raman scattering (SERS) is an alternative to fluorescence (FL) detection

  • It was found that the mildly reduced graphene oxide (MR-GO) monolayer with a thickness of approximately 0.65 nm is uniformly assembled on silicon surface

  • Some negligible overlapping MR-GO films can be observed on the silicon surface, which could be avoided by adjusting the concentration of the MR-GO solution during the assembly process

Read more

Summary

Introduction

Surface-enhanced Raman scattering (SERS) is an alternative to fluorescence (FL) detection. It greatly amplifies the Raman signal of analytes adsorbed on metal surface [1]. Due to their good chemical stability and bio-compatibility, Au and Ag films are typically regarded as the good SERS substrates [2,3]. To enhance the Raman signal from adsorbed molecules, a rough metal surface with different morphologies is normally needed for highly sensitive SERS substrates [4]. The fabrication processes either have the rigorous requirement for equipment or give a limited Raman sensitivity Both the Au and Ag films have a strong photoluminescence (PL)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.